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Matrix elements of pk in the Morse oscillator basis

Ma lgorzata Bancewicz
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Abstract. Formulae for the matrix elements ofpk in the Morse oscillator basis are derived in
thep-representation. Explicit expressions are given fork = 1, 2, 3 and 4.

1. Introduction

In 1929 Morse proposed a model potential to describe the vibrational levels of diatomic
molecules [1]. Since then this potential, known as the Morse potential, has proved useful for
a wide variety of spectroscopic problems. Some matrix elements for Morse states have been
studied by several authors [2–5]. For powers of momentump, one can find in the literature
expressions for thek = 1 and k = 2 matrix elements [6]. The authors used these for
calculating eigenvalues of the rotation–vibration Hamiltonian for symmetric-triangularX3

molecules. Recently, the evaluation of diagonal matrix elements of powers of momentum
appeared to be necessary in the calculations of moments of the density distribution of
vibrational levels [7]. Vibrational spectra composed of many densely packed energy levels
are uniquely suited to being described by statistical methods. When the number of levels
is very large, then some information about the general shape of the spectrum is required
rather than its detailed structure and very often this is only possible. However, even in
systems where the individual levels and their quantum descriptions are known, statistical
methods are of interest because they reveal new features of the system and are helpful for
a more complete understanding. Having obtained analytical expressions for moments, one
can investigate how the density of vibrational levels depends on coupling between bonds
and on the molecular structure.

In this work formulae for the matrix elements of powers of momentum in the Morse
oscillator basis are derived. Calculations are performed in the momentum representation.
This method allows one to obtain simple analytical expressions for the matrix elements,
both in the diagonal and off-diagonal cases.

The paper is organized as follows. In section 2 the Morse eigenfunctions in the
momentum representation are obtained. Then, in section 3, expressions for the matrix
elements of powers of momentum are derived. Relevant formulae which allow us to evaluate
all integrals and sums found in the expressions for the matrix elements are collected in the
appendix.

2. Morse eigenfunctions in thep-representation

The Morse potential has the form

V (r) = D exp[−2α(r − re)] − 2D exp[−α(r − re)] (1)
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whereD is the bond energy andα is the anharmonicity constant.
The eigenfunctions of the discrete states of the Morse potential,ψn(r), are given as

ψn(r) = Nn exp
[
− z

2

]
zbn/2Lbnn (z) (2)

where

Nn =
(

αbnn!

0(bn + n+ 1)

)1/2

(3)

z = 2β exp[−α(r − re)] (4)

bn = 2β − 2n− 1 (5)

β = 1

αh̄

√
2µD (6)

and whereµ is the reduced mass of the bond. The generalized Laguerre polynomialLbnn (z)

in equation (2) can be given by [8]

Lbnn (z) =
n∑
l=0

(
n+ bn
n− l

)
(−z)l
l!

. (7)

A suitable representation for calculation of the matrix elements of momentump is the
p-representation. The action of the momentum operator on a function in thep-representation
reduces to a multiplication byp. In order to find the Morse eigenfunction in the
p-representation,ψ(p), one has to calculate the Fourier transform of the eigenfunction
ψ(r). For thenth eigenfunction we have [9]

ψn(p) = 1√
2πh̄

∫ ∞
−∞

e−ip(r−re)/h̄ψn(r) dr. (8)

From equation (4) one easily findsr − re = (ln 2β)/α − (ln z)/α and dr = −dz/αz. With
these, equation (8) can also be written as

ψn(p) = (2β)−ip/h̄α

√
2πh̄α

Nn

∫ ∞
0

e−z/2z(ip/h̄α)+(bn/2)−1Lbnn (z)dz. (9)

After substitution of the Laguerre polynomial, (9) becomes

ψn(p) = (2β)−ip/h̄α

√
2πh̄α

Nn

n∑
l=0

(
n+ bn
n− l

)
(−1)l

l!

∫ ∞
0

e−z/2z(ip/h̄α)+(bn/2)+l−1 dz. (10)

The integral in equation (10) is an integral representation of the gamma function∫ ∞
0

e−z/2z(ip/h̄α)+(bn/2)+l−1 dz = 2(ip/h̄α)+(bn/2)+l0
(

ip

h̄α
+ bn

2
+ l
)
. (11)

Finally, we get

ψn(p) = 2(bn/2)−
1
2√

πh̄β(ip/h̄α)α
Nn

n∑
l=0

(−1)l

l!

(
n+ bn
n− l

)
2l0

(
ip

h̄α
+ bn

2
+ l
)
. (12)

3. Matrix elements of pk

In order to give, in thep-representation, formulae for the matrix elements,〈m|pk|n〉, of
powers of momentum in the Morse oscillator basis one has to calculate the integrals

〈m|pk|n〉 =
∫ ∞
−∞

ψm(p)
∗pkψn(p) dp. (13)

For any value ofk, calculations of these integrals reduce to performing several summations.
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3.1. Diagonal matrix elements

At first let us note a property of the momentum operator. Generally each power of thep

operator is Hermitian. In the coordinate representation in the basis of real functions, matrix
elements of odd powers ofp are imaginary. Consequently, diagonal matrix elements of
odd powers ofp must be zero. Of course, the Morse functions obey this rule and

〈n|pl|n〉 = 0 l = 1, 3, 5, . . . . (14)

In the case of the matrix element of the square of momentum one has to evaluate

〈n|p2|n〉 = 2bn−1

πh̄α2
N2
n

n∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
n+ bn
n− l′

)(
n+ bn
n− l

)
2l
′+l

×
∫ ∞
−∞

0

(−ip

h̄α
+ bn

2
+ l′

)
p20

(
ip

h̄α
+ bn

2
+ l
)

dp. (15)

From equations (A1) and (A5) of the appendix we obtain

〈n|p2|n〉 = h̄
2α

4
N2
n

n∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
n+ bn
n− l′

)(
n+ bn
n− l

)
×(bn + 2l′ − 2l′2+ 2l′l)0(bn + l′ + l). (16)

This formula can be further simplified if one notes that according to equations (A8)–(A13)
we have
n∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
n+ bn
n− l′

)(
n+ bn
n− l

)
ll′0(bn + l′ + l) = n0(bn + n+ 1)

n!
(17)

n∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
n+ bn
n− l′

)(
n+ bn
n− l

)
0(bn + l′ + l) = 0(bn + n+ 1)

bnn!
(18)

n∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
n+ bn
n− l′

)(
n+ bn
n− l

)
l′0(bn + l′ + l) = 0 (19)

n∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
n+ bn
n− l′

)(
n+ bn
n− l

)
l′20(bn + l′ + l) = 0. (20)

Substituting these results into (16) and taking into account equations (3) and (6) one gets

〈n|p2|n〉 = Dµ

2β2
(2n+ 1)bn. (21)

In principle, for any even value ofk, this procedure can be repeated to give the
corresponding matrix element, but ask increases, the complexity of the procedure also
increases. The matrix element of the fourth power of momentum derived in this way is as
follows

〈n|p4|n〉 = D2µ2

4β4
(4n3+ 6bnn

2+ 6n2+ 6bnn+ 6n+ 3bn + 2)bn. (22)

3.2. Off-diagonal matrix elements

The linear matrix element can be calculated as follows

〈m|p|n〉 = 2(bm/2)+(bn/2)−1

πh̄α2
NmNn

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
2l
′+l

×
∫ ∞
−∞

0

(−ip

h̄α
+ bm

2
+ l′

)
p0

(
ip

h̄α
+ bn

2
+ l
)

dp. (23)
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Since

〈m|pk|n〉 = (−1)k〈n|pk|m〉 (24)

we assumem > n for convenience. Then taking into account equations (A1) and (A4) we
obtain

〈m|p|n〉 = −ih̄

2
NmNn

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
×
(
bm

2
+ l′

)
0

(
bm

2
+ bn

2
+ l′ + l

)
. (25)

As before, according to (A8), (A9), (A13) and (5) we have
m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
l′0
(
bm

2
+ bn

2
+ l′ + l

)
= (−1)m−n

0(bm +m+ 1)

n!
(26)

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
0

(
bm

2
+ bn

2
+ l′ + l

)
= 0. (27)

Using these results and equations (3), (5) and (6) one easily finds

〈m|p|n〉 = (−1)m−n−1 i

(
bmbnm!0(2β −m)
2β2n!0(2β − n) µD

)1/2

m > n. (28)

The second-order matrix element (k = 2) can be calculated in a similar way. Taking into
account (A1) and (A5) we have

〈m|p2|n〉 = h̄
2α

16
NmNn

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
×[bm(2− bm + bn)+ 4(1+ bn − bm)l′ − 4l′2+ 8l′l]

×0
(
bm

2
+ bn

2
+ l′ + l

)
. (29)

Now, in order to find simple analytical expressions for the second-order matrix element one
has to evaluate another two sums. After some algebraic manipulations and simplifications
we obtain from equations (A10)–(A14) and (5)
m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
l′20

(
bm

2
+ bn

2
+ l′ + l

)
= (−1)m−n

(b2
n − 4bm − b2

m)

4n!
0(bm +m+ 1) (30)

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ bm
m− l′

)(
n+ bn
n− l

)
l′l0

(
bm

2
+ bn

2
+ l′ + l

)
= (−1)m−n−1

[
0(bn + n+ 1)

(m− 1)!
− 0(bm +m+ 1)

(n− 1)!

]
. (31)

After substituting these results and equations (3), (5) and (6) back into (29) the second-order
matrix element becomes

〈m|p2|n〉 = (−1)m−n
(
bmbnm!0(2β −m)
4β4n!0(2β − n) µ

2D2

)1/2

×[(m− n)(m+ n+ 1)+ 2β(1+ n−m)] m > n. (32)
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In equation (32) the term involving0(bn + n + 1)/(m − 1)! has been omitted since it
corresponds to the case whenn > m.

For higher-order matrix elements the calculations are similar. However, with an
increase of order the calculations leading to simple analytical formulae are more and more
complicated. Nevertheless, expressions involving two sums with a certain number of terms
can be used in all cases. The application of the same techniques to the third-order matrix
element results in

〈m|p3|n〉 = (−1)m−n i

(
bmbnm!0(2β −m)
32β6n!0(2β − n) µ

3D3

)1/2

×[m(1+m)(4+m+m2)+ n(1+ n)(4+ n+ n2)− 2m(1+m)n(1+ n)
+2+ 2β(m+ n+ 1)(−4+ 3m− 2m2− 3n− 2n2+ 4mn)

+4β2(1−m+ n)(2−m+ n)] m > n. (33)

To calculate the matrix elements ofpk in the coordinate representation, it is very
convenient to start from the relations

(Em − En)〈m|p|n〉 = 〈m|[H,p]|n〉 = −ih̄

〈
m

∣∣∣∣dVdr
∣∣∣∣n〉 = ih̄Dαβ−2

〈
m

∣∣∣∣z2

2
− βz

∣∣∣∣n〉 (34)

p2 = 2µ[H − V (r)]. (35)

However, with an increase ink the corresponding derivations, especially for oddk values,
become cumbersome.
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Appendix

Calculations of the integrals related to the gamma functions can be performed by the method
described by Marichev [10]. Accordingly∫ ∞
−∞

0(a + ix)0(a′ − ix)xk dx = (−1)k
2π

ik
0(a + a′)

∞∑
n=0

(−1)n

n!
(a + a′)n(a + n)k

= 2π

ik
0(a + a′)

∞∑
n=0

(−1)n

n!
(a + a′)n(a′ + n)k. (A1)

The sums in this equation evaluated with the help of theMathematicasystem are as follows
[11],

∞∑
n=0

(−1)n

n!
(a + a′)n(a + n)k = 2−a−a

′
Ak (A2)

where

A0 = 1 (A3)

A1 = 1
2(a
′ − a) (A4)

A2 = − 1
4(a + a′)+ 1

4(a − a′)2 (A5)

A3 = 3
8(a
′2− a2)+ 1

8(a − a′)3 (A6)

A4 = 1
8(a + a′)− 3

8(a + a′)(a′ − a)2+ 3
16(a + a′)2+ 1

16(a − a′)4. (A7)
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The sums appearing in the formulae for the matrix elements of powers of momentum
(k = 1, 2, 3) can be obtained by using theMathematicasystem and read [11]
m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ b′
m− l′

)(
n+ b
n− l

)
0

(
b′

2
+ b

2
+ l′ + l

)
= (b′ + 1)m0((b′/2)+ (b/2))((b/2)− (b′/2)+ 1)n

m!n!

×3F2

(
b′

2
− b

2
,
b′

2
+ b

2
,−m; b′ + 1,

b′

2
− b

2
− n; 1

)
(A8)

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ b′
m− l′

)(
n+ b
n− l

)
l′0
(
b′

2
+ b

2
+ l′ + l

)
= −0((b

′/2)+ (b/2)+ 1)(b′ + 2)m−1((b/2)− (b′/2))n
(m− 1)!n!

×3F2

(
b′

2
− b

2
+ 1,

b′

2
+ b

2
+ 1, 1−m; b′ + 2,

b′

2
− b

2
− n+ 1; 1

)
(A9)

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ b′
m− l′

)(
n+ b
n− l

)
l′l0

(
b′

2
+ b

2
+ l′ + l

)
= 0((b′/2)+ (b/2)+ 2)(b′ + 2)m−1((b/2)− (b′/2))n−1

(m− 1)!(n− 1)!

×3F2

(
b′

2
− b

2
+ 1,

b′

2
+ b

2
+ 2, 1−m; b′ + 2,

b′

2
− b

2
− n+ 2; 1

)
(A10)

m∑
l′=0

n∑
l=0

(−1)l
′+l

l′!l!

(
m+ b′
m− l′

)(
n+ b
n− l

)
l′20

(
b′

2
+ b

2
+ l′ + l

)
= −0((b

′/2)+ (b/2)+ 1)(b′ + 3)m−2((b/2)− (b′/2))n−1

4(m− 1)!(n− 1)!

×
[

2(b′ + 2)(b − b′ + 2n− 2)× 3F2

(
b′

2
− b

2
+ 1,

b′

2
+ b

2
+ 1, 1−m; b′

+2,
b′

2
− b

2
− n+ 1; 1

)
+ (2− b′ − b)(2+ b − b′)(m− 1)

×3F2

(
b′

2
− b

2
+ 2,

b′

2
+ b

2
+ 2, 2−m; b′ + 3,

b′

2
− b

2
− n+ 2; 1

)]
. (A11)

The confluent hypergeometric function3F2 in these equations is defined by [8]

3F2(a, b, c; d, e; 1) =
∞∑
i=0

(a)i(b)i(c)i

(d)i(e)i i!
. (A12)

If one of the parameters in the numerator is equal to another one in the denominator then
this function reduces to [8]

2F1(a, b; c; 1) =
∞∑
i=0

(a)i(b)i

(c)i i!
= 0(c)0(c − a − b)
0(c − a)0(c − b) . (A13)

Another property of the hypergeometric function3F2 useful in our calculations is [8]

3F2(−n, a, b; a + 1, b − n− 1; 1) = n!a

(1− b)n+1

[
(1+ a − b)n+1

(a)n+1
− 1

]
. (A14)
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